Improving Machine Translation Performance by Exploiting Non-Parallel Corpora

نویسندگان

  • Dragos Stefan Munteanu
  • Daniel Marcu
چکیده

We present a novel method for discovering parallel sentences in comparable, non-parallel corpora. We train a maximum entropy classifier that, given a pair of sentences, can reliably determine whether or not they are translations of each other. Using this approach, we extract parallel data from large Chinese, Arabic, and English non-parallel newspaper corpora. We evaluate the quality of the extracted data by showing that it improves the performance of a state-of-the-art statistical machine translation system. We also show that a good-quality MT system can be built from scratch by starting with a very small parallel corpus (100,000 words) and exploiting a large non-parallel corpus. Thus, our method can be applied with great benefit to language pairs for which only scarce resources are available.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استخراج پیکره‌ موازی از اسناد قابل‌مقایسه برای بهبود کیفیت ترجمه در سیستم‌های ترجمه ماشینی

Data used for training statistical machine translation method are usually prepared from three resources: parallel, non-parallel and comparable text corpora. Parallel corpora are an ideal resource for translation but due to lack of these kinds of texts, non-parallel and comparable corpora are used either for parallel text extraction. Most of existing methods for exploiting comparable corpora loo...

متن کامل

Improving Statistical Machine Translation Performance by Training Data Selection and Optimization

Parallel corpus is an indispensable resource for translation model training in statistical machine translation (SMT). Instead of collecting more and more parallel training corpora, this paper aims to improve SMT performance by exploiting full potential of the existing parallel corpora. Two kinds of methods are proposed: offline data optimization and online model optimization. The offline method...

متن کامل

Train the Machine with What It Can Learn - Corpus Selection for SMT

Statistical machine translation relies heavily on available parallel corpora, but SMT may not have the ability or intelligence to make full use of the training set. Instead of collecting more and more parallel training corpora, this paper aims to improve SMT performance by exploiting the full potential of existing parallel corpora. We first identify literally translated sentence pairs via lexic...

متن کامل

Improving Named Entity Translation by Exploiting Comparable and Parallel Corpora

Translation of named entities (NEs), such as person, organization, country, and location names is very important for several natural language processing applications. It plays a vital role in applications like cross lingual information retrieval, and machine translation. Web and news documents introduce new named entities on regular basis. Those new names cannot be captured by ordinary machine ...

متن کامل

An Efficient Framework for Extracting Parallel Sentences from Non-Parallel Corpora

Automatically building a large bilingual corpus that contains millions of words is always a challenging task. In particular in case of low-resource languages, it is difficult to find an existing parallel corpus which is large enough for building a real statistical machine translation. However, comparable non-parallel corpora are richly available in the Internet environment, such as in Wikipedia...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computational Linguistics

دوره 31  شماره 

صفحات  -

تاریخ انتشار 2005